Input / Output Functions
Description
Contains a set of routines that retrieve quantities such as Green’s functions, self-energies (see ed_greens_functions
) and observables (from ed_observables
) and pass them to the user, as well ass routines to read and store Green’s function and self-energies.
Quick access
- Routines:
ed_get_sigma()
,ed_get_gimp()
,ed_get_g0imp()
,ed_build_gimp()
,ed_build_sigma()
,ed_get_g0and()
,ed_get_delta()
,ed_get_dens()
,ed_get_mag()
,ed_get_docc()
,ed_get_phi()
,ed_get_eimp()
,ed_get_epot()
,ed_get_eint()
,ed_get_ehartree()
,ed_get_eknot()
,ed_get_doubles()
,ed_get_dust()
,ed_get_dund()
,ed_get_dse()
,ed_get_dph()
,ed_get_density_matrix()
,ed_read_impsigma()
,ed_print_impsigma()
,ed_print_impg()
,ed_print_impg0()
,ed_print_impd()
,ed_print_impchi()
,ed_print_impgmatrix()
,ed_read_impgmatrix()
,ed_get_quantum_soc_operators()
,ed_get_neigen_total()
Used modules
ed_input_vars
: Contains all global input variables which can be set by the user through the input file. A specific preocedureed_read_input()
should be called to read the input file usingparse_input_variable()
procedure from SciFortran. All variables are automatically set to a default, looked for and updated by reading into the file and, sequentially looked for and updated from command line (std.input) using the notation variable_name=variable_value(s) (case independent).ed_vars_global
: Contains all variables, arrays and derived types instances shared throughout the code. Specifically, it contains definitions of theeffective_bath
, thegfmatrix
and thesector
data structures.ed_aux_funx
: Hosts a number of auxiliary procedures required in different parts of the code. Specifically, it implements: creation/annihilation fermionic operators, binary decomposition of integer representation of Fock states and setup the local impurity Hamiltonianed_setup
: Contains procedures to set up the Exact Diagonalization calculation, executing all internal consistency checks and allocation of the global memory.ed_bath
: Contains routines for setting, accessing, manipulating and clearing the bath of the Impurity problem.sf_spin
-
-
-
Subroutines and functions
- interface ed_io/ed_get_sigma(self, nlat[, axis, type])
- This subrotine gets from the EDIpack2 library the value of the self-energy calculated on the Matsubara or real-frequency axis, with number of frequencies
lmats
orlreal
.The self-energy is an array having the following possible dimensions:- Parameters:
self (various shapes) [complex, inout] – Self-energy matrix
nlat [integer, in] – Number of inequivalent impurity sites for real-space DMFT
- Options:
axis [character(len=*)] – Can be
"m"
for Matsubara (default),"r"
for realtype [character(len=*)] – Can be
"n"
for Normal (default),"a"
for anomalous
- interface ed_io/ed_get_gimp(self, nlat[, axis, type])
This subroutine gets from the EDIpack2 library the value of the impurity Green’s function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmats
orlreal
.The impurity Green’s function is an array having the following possible dimensions:
- Parameters:
self (various shapes) [complex, inout] – Green’s function matrix
nlat [integer, in] – Number of inequivalent impurity sites for real-space DMFT
- Options:
axis [character(len=*)] – Can be
"m"
for Matsubara (default),"r"
for realtype [character(len=*)] – Can be
"n"
for Normal (default),"a"
for anomalous
- interface ed_io/ed_get_g0imp(self, bath[, axis, type])
- This subroutine gets from the EDIpack2 library the value of the impurity non-interacting Green’s function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmats
orlreal
.It autonomously decides whether the system is single-impurity or real-space DMFT based on thebath
shapeThe impurity non-interacting Green’s function is an array having the following possible dimensions:
The bath is an array having the following possible dimensions:
[
nb
] for single-impurity DMFT[
nlat
,nb
] for real-space DMFT, withnlat
the number of inequivalent impurity sites
Where
nb
is the length of thebath
array.- Parameters:
self (various shapes) [complex, inout] – Non-interacting Green’s function matrix
bath (various shapes) [real] – The bath vector
- Options:
axis [character(len=*)] – Can be
"m"
for Matsubara (default),"r"
for realtype [character(len=*)] – Can be
"n"
for Normal (default),"a"
for anomalous
- interface ed_io/ed_build_gimp(zeta, gimp, nlat[, fimp])
- This subroutine returns to the user the impurity Green’s function matrix calculated at any provided frequency in the complex plane, by obtaining it from the stored poles and weights.
The impurity Green’s function is an array having the following possible dimensions:
- Parameters:
zeta (•) [complex] – array of frequencies
gimp (various shapes) [complex] – impurity Green’s function matrix (
ed_mode
=normal/nonsu2
)nlat [integer] – Number of inequivalent impurity sites for real-space DMFT
- Options:
fimp (various shapes) [complex] – anomalous impurity Green’s function matrix (
ed_mode
=superc
)
- interface ed_io/ed_build_sigma(zeta, sigma, nlat[, self])
- This subroutine returns to the user the self-energy matrix calculated at any provided frequency in the complex plane, by obtaining it from the stored poles and weights
The self-energy is an array having the following possible dimensions:
- Parameters:
zeta (•) [complex] – array of frequencies
sigma (various shapes) [complex] – self-energy matrix (
ed_mode
=normal/nonsu2
)nlat [integer] – Number of inequivalent impurity sites for real-space DMFT
- Options:
self (various shapes) [complex] – anomalous self-energy matrix (
ed_mode
=superc
)
- interface ed_io/ed_get_g0and(x, bath_, g0and[, axis, type])
- This subroutine returns to the user the normal non-interacting Green’s function \(G_0(x)\) and the anomalous non-interacting Green’s function \(F_0(x)\) on a given set of frequencies. It does so by calling
g0and_bath_function()
andg0and_bath_function()
.The non-interacting Green’s function is an array having the following possible dimensions:
- Parameters:
x (•) [complex, in] – complex array of frequencies
bath_ (•) [real] – user-accessible bath array
g0and (various shapes) [complex] – non-interacting Green’s function
- Options:
axis [character(len=*)] – string indicating the desired axis,
'm'
for Matsubara (default),'r'
for Real-axistype [character(len=*)] – string indicating the desired function,
'n'
for normal (default),'a'
for anomalous
- interface ed_io/ed_get_delta(x, bath_, delta[, axis, type])
- This subroutine returns to the user the normal hybridization function \(\Delta(x)\) and the anomalous hybridization function \(\Theta(x)\) on a given set of frequencies. It does so by calling
delta_bath_function()
andfdelta_bath_function()
.The hybridization function is an array having the following possible dimensions:
- Parameters:
x (•) [complex, in] – complex array of frequencies
bath_ (•) [real] – user-accessible bath array
delta (various shapes) [complex] – hybridization function
- Options:
axis [character(len=*)] – string indicating the desired axis,
'm'
for Matsubara (default),'r'
for Real-axistype [character(len=*)] – string indicating the desired function,
'n'
for normal (default),'a'
for anomalous
- interface ed_io/ed_get_dens(self, nlat[, iorb, nlat])
This subroutine gets from the EDIpack2 library the value of the charge density and passes it to the user.
The
self
variable can have the following dimensions:scalar: if
iorb
is provided for single-impurity DMFT, density for that orbital[
norb
]: if no optional variable is provided for single-impurity DMFT, density for all orbitals[
nlat
]: ifiorb
(default = 1) is provided for real-space DMFT withnlat
impurities, density for that orbital for all impurity sites[
nlat
,norb
]: ifnlat
is provided for real-space DMFT, density for all impurity sites and orbitals
- Parameters:
self (various shapes) [real] – The density value or array of values
- Options:
iorb [integer] – the orbital index
nlat [integer] – the number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_mag(self, nlat[, component, iorb, nlat])
This subroutine gets from the EDIpack2 library the value of the magnetization and passes it to the user.
The
self
variable can have the following dimensions:scalar: if
component
andiorb
are provided for single-impurity DMFT, given magnetization component for that orbital[
norb
]: for single-impurity DMFT, one magnetization component for all orbitals[
nlat
]: for real-space DMFT withnlat
impurities, magnetization for that orbital for all impurity sites[
nlat
,norb
]: ifnlat
is provided for real-space DMFT, one magnetization component for all orbitals and impurity sites[
nlat
,3
,norb
]: ifnlat
is provided for real-space DMFT, all magnetization components for all orbitals and sites
- Parameters:
self (various shapes) [real] – Magnetization
- Options:
component [character(len=1)] – Component of the magnetization, can be
"x"
,"y"
,"z"
(default"z"
)iorb [integer] – Orbital (default
1
)nlat [integer] – Number of inequivalent impurities for real-space DMFT
- interface ed_io/ed_get_docc(self, nlat[, iorb, nlat])
This subroutine gets from the EDIpack2 library the value of the double occupation and passes it to the user.
The
self
variable can have the following dimensions:scalar: if
iorb
is provided for single-impurity DMFT, dobule-occupation for that orbital[
norb
]: if no optional variable is provided for single-impurity DMFT, double-occupation for all orbitals[
nlat
]: ifiorb
(default = 1) is provided for real-space DMFT withnlat
impurities, double-occupation for that orbital for all impurity sites[
nlat
,norb
]: ifnlat
is provided for real-space DMFT, double-occupation for all impurity sites and orbitals
- Parameters:
self (various shapes) [real] – double-occupation value or array of values
- Options:
iorb [integer] – orbital index
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_phi(self, nlat[, iorb, nlat])
This subroutine gets from the EDIpack2 library the value of the superconducting order parameter \(\phi\) (
ed_mode
=superc
) and passes it to the user.The
self
variable can have the following dimensions:scalar: if
iorb
is provided for single-impurity DMFT, \(\phi\) for that orbital[
norb
]: if no optional variable is provided for single-impurity DMFT, \(\phi\) for all orbitals[
nlat
]: ifiorb
(default = 1) is provided for real-space DMFT withnlat
impurities, \(\phi\) for that orbital for all impurity sites[
nlat
,norb
]: ifnlat
is provided for real-space DMFT, \(\phi\) for all impurity sites and orbitals
- Parameters:
self (various shapes) [real] – \(\phi\) value or array of values
- Options:
iorb [integer] – orbital index
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_eimp(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the array [
ed_epot
,ed_eint
,ed_ehartree
,ed_eknot
]. These are the expectation values various contribution to the internal energyed_epot
= energy contribution from the interaction terms, including the Hartree termed_eint
= energy contribution from the interaction terms, excluding the Hartree termed_ehartree
= \(-\frac{U}{2} \sum_{i} \langle n_{i\uparrow} + n_{i\downarrow} \rangle -\frac{2U^{'}-J_{H}}{2} \sum_{i < j} \langle n_{i\uparrow}+n_{i\downarrow} + n_{i\downarrow}+n_{j\downarrow} \rangle +\frac{U}{4} + \frac{2U^{'}-J_{H}}{2}\) for \(i,j\) orbitalsed_eknot
= kinetic term from the local 1-body Hamiltonian
The returned array can have the following dimensions:
[
4
]: for single-site DMFT[
nlat
,4
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – energy components array
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_epot(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_epot
, the energy contribution from the interaction terms, including the Hartree term. The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
ed_epot
nlat [integer] – number of inequivalent impurity sites for real-space DM
- interface ed_io/ed_get_eint(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_int
, the energy contribution from the interaction terms, excluding the Hartree term. The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
ed_int
nlat [integer] – number of inequivalent impurity sites for real-space DM
- interface ed_io/ed_get_ehartree(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of the Hartree potential
ed_ehartree
. The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
ed_ehartree
nlat [integer] – number of inequivalent impurity sites for real-space DM
- interface ed_io/ed_get_eknot(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value
ed_eknot
, the kinetic term from the local 1-body Hamiltonian The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
ed_eknot
nlat [integer] – number of inequivalent impurity sites for real-space DM
- interface ed_io/ed_get_doubles(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the array [
ed_dust
,ed_dund
,ed_dse
,ed_dph
]. These are the expectation values of the two-body operators associated with the density-density inter-orbital interaction (with opposite and parallel spins), spin-exchange and pair-hopping.ed_dust
= \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitalsed_dund
= \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitalsed_dse
= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitalsed_dph
= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals
The returned array can have the following dimensions:
[
4
]: for single-site DMFT[
nlat
,4
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – array of two-body terms expectation values
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_dust(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_dust
= \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
dust
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_dund(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_dund
= \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
dund
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_dse(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_dse
= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
dse
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_dph(self, nlat)
This subroutine gets from the EDIpack2 library and passes to the user the value of
ed_dph
= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
[
nlat
]: for real-space DMFT withnlat
impurities
- Parameters:
self (various shapes) [real] – value of
dph
nlat [integer] – number of inequivalent impurity sites for real-space DMFT
- interface ed_io/ed_get_density_matrix(dm_)
This subroutine returns to the user the impurity density matrix. The density matrix is an array having the following possible dimensions:
- Parameters:
dm_ (various shapes) [complex, out,allocatable]
- interface ed_io/ed_read_impsigma(nineq)
This subroutine reads the impurity Sigmas from files in the execution folder and stores them in the global variables
impsmats
normal self-energy, Matsubara axisimpsreal
normal self-energy, real frequency axisimpsamats
anomalous self-energy, Matsubara axisimpsareal
anomalous self-energy, real frequency axissmats_ineq
normal self-energy, Matsubara axis, real-space DMFTsreal_ineq
normal self-energy, real frequency axis, real-space DMFTsamats_ineq
anomalous self-energy, Matsubara axis, real-space DMFTsareal_ineq
anomalous self-energy, real frequency axis, real-space DMFT
The files have to be formatted to be compatible with the EDIpack2 library, that is \([\omega,\mathrm{Im}\Sigma,\mathrm{Re}\Sigma]\) . One file per self-energy component, with the name
"impSigma_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_iw"//reg(ed_file_suffix)//".ed"
normal self-energy, Matsubara axis"impSigma_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_realw"//reg(ed_file_suffix)//".ed"
normal self-energy, real frequency axis"impSelf_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_iw"//reg(ed_file_suffix)//".ed"
anomalous self-energy, Matsubara axis"impSelf_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_realw"//reg(ed_file_suffix)//".ed"
anomalous self-energy, real frequency axis
The variable
ed_file_suffix
is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation.- Parameters:
nineq [integer] – number of inequivalent impurity sites for real-space DMFT
- subroutine ed_io/ed_print_impsigma()
This subroutine print the impurity self-energy on plain text files in the execution folder. The files are formatted like \([\omega,\mathrm{Im}\Sigma,\mathrm{Re}\Sigma]\) . One file per self-energy component, with the name
"impSigma_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_iw"//reg(ed_file_suffix)//".ed"
normal self-energy, Matsubara axis"impSigma_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_realw"//reg(ed_file_suffix)//".ed"
normal self-energy, real frequency axis"impSelf_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_iw"//reg(ed_file_suffix)//".ed"
anomalous self-energy, Matsubara axis"impSelf_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_realw"//reg(ed_file_suffix)//".ed"
anomalous self-energy, real frequency axis
The variable
ed_file_suffix
is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation.
- subroutine ed_io/ed_print_impg()
This subroutine print the impurity Green’s function on plain text files in the execution folder. The files are formatted like \([\omega,\mathrm{Im}G,\mathrm{Re}G]\) . One file per Green’sfunction component, with the name
"impG_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_iw"//reg(ed_file_suffix)//".ed"
normal G, Matsubara axis"impG_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_realw"//reg(ed_file_suffix)//".ed"
normal G, real frequency axis"impF_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_iw"//reg(ed_file_suffix)//".ed"
anomalous G, Matsubara axis"impF_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_realw"//reg(ed_file_suffix)//".ed"
anomalous G, real frequency axis
The variable
ed_file_suffix
is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation.
- subroutine ed_io/ed_print_impg0()
This subroutine print the non-interacting impurity Green’s function on plain text files in the execution folder. The files are formatted like \([\omega,\mathrm{Im}G_{0},\mathrm{Re}G_{0}]\) . One file per Green’s function component, with the name
"impG0_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_iw"//reg(ed_file_suffix)//".ed"
normal G, Matsubara axis"impG0_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_realw"//reg(ed_file_suffix)//".ed"
normal G, real frequency axis"impF0_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_iw"//reg(ed_file_suffix)//".ed"
anomalous G, Matsubara axis"impF0_l"//str(iorb)[str(jorb)]//_s"//str(ispin)"_realw"//reg(ed_file_suffix)//".ed"
anomalous G, real frequency axis
The variable
ed_file_suffix
is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation.
- subroutine ed_io/ed_print_impd()
- This subroutine print the impurity phonon self-energy on the files
"impDph_iw.ed"
matsubara axisimpDph_realw.ed"
real frequency axis
- subroutine ed_io/ed_print_impchi()
This subroutine prints the susceptibilities. The files are formatted like \([\omega,\mathrm{Im}\\chi,\mathrm{Re}\\chi]\) . Which susceptibilities are printed depends on the values of
chispin_flag
(spin),chidens_flag
(charge),chipair_flag
(pair),chiexct_flag
(exciton). One file per component. The name of the files are"[spin/dens/pair/exct]Chi_[singlet/tripletXY,tripletZ]_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_tau"//reg(ed_file_suffix)//".ed"
imaginary time"[spin/dens/pair/exct]Chi_[singlet/tripletXY,tripletZ]_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_iw"//reg(ed_file_suffix)//".ed"
Matsubara axis"[spin/dens/pair/exct]Chi_[singlet/tripletXY,tripletZ]_l"//str(iorb)[str(jorb)]//_s"//str(ispin)[str(jspin)]"_realw"//reg(ed_file_suffix)//".ed"
real frequency axis axis
The variable
ed_file_suffix
is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation.
- subroutine ed_io/ed_print_impgmatrix([file])
This subroutine prints weights and poles of the impurity Green’s function by calling
write_GFmatrix()
. These are stored one a file named"file"//str(ed_file_suffix)//.restart"
taking into account the value of the global variableed_file_suffix
, which is"_ineq_Nineq"
padded with 4 zeros in the case of inequivalent sites, as per documentation- Options:
file [character(len=*)] – filename prefix (default
gfmatrix
)
- subroutine ed_io/ed_read_impgmatrix([file])
- Options:
file [character(len=*)]
- subroutine ed_io/ed_get_quantum_soc_operators()
This subroutine gets and prints the values of the components \(\overrightarrow{L}\), \(\overrightarrow{S}\), \(\overrightarrow{J}\) in the chosen basis depending on
jz_basis
, and prints them on the files"L_imp_"//reg(str(ndx))//".dat"
,"S_imp_"//reg(str(ndx))//".dat"
and"J_imp_"//reg(str(ndx))//".dat"
, wherendx
is the inequivalent impurity site for real-space DMFT (if that is the case). The ordering of the results in the output files is described by comments in the files themselves
- subroutine ed_io/ed_get_neigen_total(nlii, nlat)
In the case of inequivalent impurity sites, this function returns the number of eigenstates per impurity site in the ED spectrum.
- Parameters:
nlii (nlat) [integer] – array containing the number of eigenstates per inequivalent impurity site
- Options:
nlat [integer] – number of inequivalent impurity sites for real-space DMFT