ikna Subroutine

subroutine ikna(n, x, nm, bi, di, bk, dk)

************80

! IKNA compute Bessel function In(x) and Kn(x), and derivatives.

Licensing:

This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,
they give permission to incorporate this routine into a user program
provided that the copyright is acknowledged.

Modified:

16 July 2012

Author:

Shanjie Zhang, Jianming Jin

Reference:

Shanjie Zhang, Jianming Jin,
Computation of Special Functions,
Wiley, 1996,
ISBN: 0-471-11963-6,
LC: QA351.C45.

Parameters:

Input, integer ( kind = 4 ) N, the order of In(x) and Kn(x).

Input, real ( kind = 8 ) X, the argument.

Output, integer ( kind = 4 ) NM, the highest order computed.

Output, real ( kind = 8 ) BI(0:N), DI(0:N), BK(0:N), DK(0:N),
the values of In(x), In'(x), Kn(x), Kn'(x).

Arguments

Type IntentOptional Attributes Name
integer(kind=4) :: n
real(kind=8) :: x
integer(kind=4) :: nm
real(kind=8) :: bi(0:n)
real(kind=8) :: di(0:n)
real(kind=8) :: bk(0:n)
real(kind=8) :: dk(0:n)

Calls

proc~~ikna~2~~CallsGraph proc~ikna~2 ikna ik01a ik01a proc~ikna~2->ik01a msta1 msta1 proc~ikna~2->msta1 msta2 msta2 proc~ikna~2->msta2

Source Code

subroutine ikna ( n, x, nm, bi, di, bk, dk )

  !*****************************************************************************80
  !
  !! IKNA compute Bessel function In(x) and Kn(x), and derivatives.
  !
  !  Licensing:
  !
  !    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However, 
  !    they give permission to incorporate this routine into a user program 
  !    provided that the copyright is acknowledged.
  !
  !  Modified:
  !
  !    16 July 2012
  !
  !  Author:
  !
  !    Shanjie Zhang, Jianming Jin
  !
  !  Reference:
  !
  !    Shanjie Zhang, Jianming Jin,
  !    Computation of Special Functions,
  !    Wiley, 1996,
  !    ISBN: 0-471-11963-6,
  !    LC: QA351.C45.
  !
  !  Parameters:
  !
  !    Input, integer ( kind = 4 ) N, the order of In(x) and Kn(x).
  !
  !    Input, real ( kind = 8 ) X, the argument.
  !
  !    Output, integer ( kind = 4 ) NM, the highest order computed.
  !
  !    Output, real ( kind = 8 ) BI(0:N), DI(0:N), BK(0:N), DK(0:N),
  !    the values of In(x), In'(x), Kn(x), Kn'(x).
  !
  implicit none

  integer ( kind = 4 ) n

  real ( kind = 8 ) bi(0:n)
  real ( kind = 8 ) bi0
  real ( kind = 8 ) bi1
  real ( kind = 8 ) bk(0:n)
  real ( kind = 8 ) bk0
  real ( kind = 8 ) bk1
  real ( kind = 8 ) di(0:n)
  real ( kind = 8 ) di0
  real ( kind = 8 ) di1
  real ( kind = 8 ) dk(0:n)
  real ( kind = 8 ) dk0
  real ( kind = 8 ) dk1
  real ( kind = 8 ) f
  real ( kind = 8 ) f0
  real ( kind = 8 ) f1
  real ( kind = 8 ) g
  real ( kind = 8 ) g0
  real ( kind = 8 ) g1
  real ( kind = 8 ) h
  real ( kind = 8 ) h0
  real ( kind = 8 ) h1
  integer ( kind = 4 ) k
  integer ( kind = 4 ) m
    ! integer ( kind = 4 ) msta1
  ! integer ( kind = 4 ) msta2
  integer ( kind = 4 ) nm
  real ( kind = 8 ) s0
  real ( kind = 8 ) x

  nm = n

  if ( x <= 1.0D-100 ) then
     do k = 0, n
        bi(k) = 0.0D+00
        di(k) = 0.0D+00
        bk(k) = 1.0D+300
        dk(k) = -1.0D+300
     end do
     bi(0) = 1.0D+00
     di(1) = 0.5D+00
     return
  end if

  call ik01a ( x, bi0, di0, bi1, di1, bk0, dk0, bk1, dk1 )
  bi(0) = bi0
  bi(1) = bi1
  bk(0) = bk0
  bk(1) = bk1
  di(0) = di0
  di(1) = di1
  dk(0) = dk0
  dk(1) = dk1

  if ( n <= 1 ) then
     return
  end if

  if ( 40.0D+00 < x .and. n < int ( 0.25D+00 * x ) ) then

     h0 = bi0
     h1 = bi1
     do k = 2, n
        h = -2.0D+00 * ( k - 1.0D+00 ) / x * h1 + h0
        bi(k) = h
        h0 = h1
        h1 = h
     end do

  else

     m = msta1 ( x, 200 )

     if ( m < n ) then
        nm = m
     else
        m = msta2 ( x, n, 15 )
     end if

     f0 = 0.0D+00
     f1 = 1.0D-100
     do k = m, 0, -1
        f = 2.0D+00 * ( k + 1.0D+00 ) * f1 / x + f0
        if ( k <= nm ) then
           bi(k) = f
        end if
        f0 = f1
        f1 = f
     end do
     s0 = bi0 / f
     do k = 0, nm
        bi(k) = s0 * bi(k)
     end do
  end if

  g0 = bk0
  g1 = bk1
  do k = 2, nm
     g = 2.0D+00 * ( k - 1.0D+00 ) / x * g1 + g0
     bk(k) = g
     g0 = g1
     g1 = g
  end do

  do k = 2, nm
     di(k) = bi(k-1) - k / x * bi(k)
     dk(k) = - bk(k-1) - k / x * bk(k)
  end do

  return
end subroutine ikna